24 research outputs found

    Retrospektive Analyse von klinischen Daten zu über 500 offenen Prostataadenomektomien am Städtischen Krankenhaus Kiel zwischen 2000 und 2012

    Get PDF

    Curvature-driven PDE methods for matrix-valued images

    Get PDF
    Matrix-valued data sets arise in a number of applications including diffusion tensor magnetic resonance imaging (DT-MRI) and physical measurements of anisotropic behaviour. Consequently, there arises the need to filter and segment such tensor fields. In order to detect edgelike structures in tensor fields, we first generalise Di Zenzo\u27s concept of a structure tensor for vector-valued images to tensor-valued data. This structure tensor allows us to extend scalar-valued mean curvature motion and self-snakes to the tensor setting. We present both two-dimensional and three-dimensional formulations, and we prove that these filters maintain positive semidefiniteness if the initial matrix data are positive semidefinite. We give an interpretation of tensorial mean curvature motion as a process for which the corresponding curve evolution of each generalised level line is the gradient descent of its total length. Moreover, we propose a geodesic active contour model for segmenting tensor fields and interpret it as a minimiser of a suitable energy functional with a metric induced by the tensor image. Since tensorial active contours incorporate information from all channels, they give a contour representation that is highly robust under noise. Experiments on three-dimensional DT-MRI data and an indefinite tensor field from fluid dynamics show that the proposed methods inherit the essential properties of their scalar-valued counterparts

    Mathematical Morphology on Tensor Data Using the Loewner Ordering

    Get PDF
    The notions of maximum and minimum are the key to the powerful tools of greyscale morphology. Unfortunately these notions do not carry over directly to tensor-valued data. Based upon the Loewner ordering for symmetric matrices this paper extends the maximum and minimum operation to the tensor-valued setting. This provides the ground to establish matrix-valued analogues of the basic morphological operations ranging from erosion/dilation to top hats. In contrast to former attempts to develop a morphological machinery for matrices, the novel definitions of maximal/minimal matrices depend continuously on the input data, a property crucial for the construction of morphological derivatives such as the Beucher gradient or a morphological Laplacian. These definitions are rotationally invariant and preserve positive semidefiniteness of matrix fields as they are encountered in DT-MRI data. The morphological operations resulting from a component-wise maximum/minimum of the matrix channel

    Variational optic flow computation in real-time

    Get PDF
    Variational methods for optic flow computation have the reputation of producing good results at the expense of being too slow for realtime applications. We show that real-time variational computation of optic flow fields is possible when appropriate methods are combined with modern numerical techniques. We consider the CLG method, a recent variational technique that combines the quality of the dense flow fields of the Horn and Schunck approach with the noise robustness of the Lucas-Kanade method. For the linear system of equations resulting from the discretised Euler-Lagrange equations, we present different multigrid schemes in detail. We show that under realistic accuracy requirements they are up to 247 times more efficient than the widely used Gauß-Seidel algorithm. On a 3.06 GHz PC, we have computed 40 dense flow fields of size 200 x 200 pixels within a single second

    Median and related local filters for tensor-valued images

    Get PDF
    We develop a concept for the median filtering of tensor data. The main part of this concept is the definition of median for symmetric matrices. This definition is based on the minimisation of a geometrically motivated objective function which measures the sum of distances of a variable matrix to the given data matrices. This theoretically wellfounded concept fits into a context of similarly defined median filters for other multivariate data. Unlike some other approaches, we do not require by definition that the median has to be one of the given data values. Nevertheless, it happens so in many cases, equipping the matrix-valued median even with root signals similar to the scalar-valued situation. Like their scalar-valued counterparts, matrix-valued median filters show excellent capabilities for structure-preserving denoising. Experiments on diffusion tensor imaging, fluid dynamics and orientation estimation data are shown to demonstrate this. The orientation estimation examples give rise to a new variant of a robust adaptive structure tensor which can be compared to existing concepts. For the efficient computation of matrix medians, we present a convex programming framework. By generalising the idea of the matrix median filters, we design a variety of other local matrix filters. These include matrix-valued mid-range filters and, more generally, M-smoothers but also weighted medians and \alpha-quantiles. Mid-range filters and quantiles allow also interesting cross-links to fundamental concepts of matrix morphology

    PDEs for tensor image processing

    Get PDF
    Methods based on partial differential equations (PDEs) belong to those image processing techniques that can be extended in a particularly elegant way to tensor fields. In this survey paper the most important PDEs for discontinuity-preserving denoising of tensor fields are reviewed such that the underlying design principles becomes evident. We consider isotropic and anisotropic diffusion filters and their corresponding variational methods, mean curvature motion, and selfsnakes. These filters preserve positive semidefiniteness of any positive semidefinite initial tensor field. Finally we discuss geodesic active contours for segmenting tensor fields. Experiments are presented that illustrate the behaviour of all these methods

    PDEs for tensor image processing

    Get PDF
    Methods based on partial differential equations (PDEs) belong to those image processing techniques that can be extended in a particularly elegant way to tensor fields. In this survey paper the most important PDEs for discontinuity-preserving denoising of tensor fields are reviewed such that the underlying design principles becomes evident. We consider isotropic and anisotropic diffusion filters and their corresponding variational methods, mean curvature motion, and selfsnakes. These filters preserve positive semidefiniteness of any positive semidefinite initial tensor field. Finally we discuss geodesic active contours for segmenting tensor fields. Experiments are presented that illustrate the behaviour of all these methods

    PDEs for tensor image processing

    Get PDF
    Methods based on partial differential equations (PDEs) belong to those image processing techniques that can be extended in a particularly elegant way to tensor fields. In this survey paper the most important PDEs for discontinuity-preserving denoising of tensor fields are reviewed such that the underlying design principles becomes evident. We consider isotropic and anisotropic diffusion filters and their corresponding variational methods, mean curvature motion, and selfsnakes. These filters preserve positive semidefiniteness of any positive semidefinite initial tensor field. Finally we discuss geodesic active contours for segmenting tensor fields. Experiments are presented that illustrate the behaviour of all these methods

    White Matter Microstructural Changes and Episodic Memory Disturbances in Late-Onset Bipolar Disorder

    Get PDF
    Background: Bipolar disorder (BD) has been associated with distributed network disruption, but little is known on how different clinical subtypes, particularly those with an earlier and later onset of disease, are related to connectivity changes in white matter (WM) tracts.Methods: Diffusion tensor imaging (DTI) and volumetric measures were carried out in early-onset bipolar patients [(EOD) (n = 16)], late-onset bipolar disorder [(LOD)(n = 14)] and healthy controls (n = 32). We also computed ROI analysis of gray matter (GM) and white matter (WM) volumes using the regions with significant group differences in the DTI parameters. Cognitive and behavior measurements were analyzed between groups.Results: Lower fraction of anisotropy (FA) in the right hemisphere comprising anterior thalamic radiation, fornix, posterior cingulate, internal capsule, splenium of corpus callosum was observed in the LOD in comparison with EOD; additionally, lower FA was also found in the LOD in comparison with healthy controls, mostly in the right hemisphere and comprising fibers of the splenium of the corpus callosum, cingulum, superior frontal gyrus and posterior thalamic radiation; LOD also showed worse episodic memory performance than EOD; no statistical significant differences between mood symptoms, WM and GM volumes were found between BD groups.Conclusion: Even after correcting for age differences, LOD was associated with more extensive WM microstructural changes and worse episodic memory performance than EOD; these findings suggest that changes in the WM fiber integrity may be associated with a later presentation of BD, possibly due to mechanisms other than neuroprogression. However, these findings deserve replication in larger, prospective, studies
    corecore